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WAVE STRUCTURE OF TURBULENT FLOW IN A TUBE 

Ya. A. Vagramenko UDC 532.525.2 

The wave theory of turbulence is applied to determine the fluctuation field u of 
shear flow in a tube. 

The particle-wave representation of turbulence reflects several of its quantum-mechanical 
properties: the fluctuation fields of vortices are manifested as a fluctuation probability 
wave, encompassing the region of the statistically coupled vortex state. The wavelength of 
the probability standing wave determines the largest vortex size occurring in the transverse 
flow scale. A mean (regular) shear flow is realized within the limits of this wave. In the 
shear model the fluctuation field is represented by means of the wave function 4, determining 
the probability wave amplitude -- the fluctuation intensity, as well as their linear scales 
inversely proportional to the wave number. The system of equations and the foundations of 
the method discussed were published earlier in [I, 2]. Several assumptions on the quantum 
analogies of turbulence were discussed in [3]. 

Turbulent flow in a tube at a sufficient distance from its input cross section is real- 
ized without longitudinal variation of the fluctuation field. In this case 

ih O~ h ~ { 0 ~  , 1 0~ ) i =  r (1) 
Ot 29 ~ ~y~ -t- } ,  �9 y Oy 

The b e h a v i o r  of t h e  V-wave ,  d e s c r i b e d  by  Eq. ( 1 ) ,  i s  d i f f e r e n t  n e a r  t h e  w a l l  (y § R) and  n e a r  
the flow axis (y § 0), since the vortex structure is inhomogeneous in these two regions. The 
increase in fluctuation intensity at the wall, along with enhanced tendency toward vortex 
formation, implies existence of an inhomogeneous wave at the walls. The stabilized structure 
of vortices "torn" from the wall is characteristic of the central flow region, in which the 
fluctuation level is also stable. The inhomogeneous wave corresponds to the special repre- 
sentation ~ = aexp (ib), so that for stationary turbulence (3a2/3t = 0) we obtain, according 
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to ~,q. (1), 

h o =  1 h ~ ( O~a 1 Oa ) 
Pu~ 20~ t av ~ + - -  ' (2) 

0 / ~  Ob ) 

where 0U = h3b/3y, m = --3b/3t. Characterizing, as usual, the tendency to vortex fluctuation 
by the probability density 2, we assume that the fluctuating energy component [the second 
term in the right-hand side of Eq. (2)] equals 62pU2/2. Consequently: 

d~a 
d~ ~ 

1 da ( db "~=aa= 0 ' (4) 

d { 2 d b \  
t = o, 

where ~ = y/R is the relative radial distance. It is seen from Eq. (5) that 

db 
q~a2 dqo - -  c, ( 6 )  

where c is an integration constant. Since db/dcp~ -I , the inhomogeneous wave cannot reach 
the stream axis cp = O: the value UNdb/d~ must remain finite everywhere. Covering adjacent 
vortices to the tube walls, the inhomogeneous region must be a half wavelength, restricted 

by two nodes, one of which is located at the point ~ = I, and the other, the internal one, 
coincides with the boundary q0-----cp] of the central stabilized wave region of constant inten- 
sity. From Eqs. (4), (6) we obtain for the region ~p1~l a solution satisfying the con- 
ditions b = 0, ~ = ~0 at ~ = I: 

= e x p  - -  a-2-~ a_. ~ ( r )  ~ ( r ) = ~  e x p ( - - F )  dr, 
c 2 ' ~ - ~ -  o 

b - -  ~ - 2 -  D(r) ,  D ( r ) =  ( e x p r  =dr. 
ao ) 

Here  r 2 = i n  (6o/6) , and 60 i s  t h e  maximum v a l u e  o f  t h e  wave a m p l i t u d e  a t  t h e  w a l l  y = R, 
where the turbulence intensity u'/U is highest. We recall that 6 = u'/U, where u' is the 
velocity fluctuation [2, 4]. We use the normalization condition 

(7) 

(8) 

bo 
f a2db = 1 (9) 

(the vortex is necessarily found at some phase at the wave). The upper limit b0 in Eq. (9) 
corresponds to ~ = 0. 

Taking into account that 62db = ~0 exp (--r2)dr for ~ 1 ~ I  , as a result of integrating 
(9) over the tube radius we obtain the relation 

Y~ 
a~b~ + V --2-- a o r  1, (10) 

where ~z = cons t  i s  the  wave i n t e n s i t y  f o r  O ~ T ~ l  , b l i s  the  t o t a l  v a r i a t i o n  o f  i t s  phase 
i n  t h i s  zone,  and the  rz  v a l u e  c o r r e s p o n d s  to  6z = 60 exp (--r~) and i s  a c h i e v e d  a t  the  p o i n t  

=~1.  S ince i n  the  b o u n d a r y - l a y e r  wave the  phase v a r i a t i o n  i s  ~ ( t he  v o r t e x  i s  c l o s e d  between 
the two nodes), then, according to Eq. (8): 

/T (I I) 
ao -- D (rl). 

To determine bz it is necessary to know the shape of the function b (~) in the region 0 ~  
~i. The magnitude of the vortex circulation h/p in a similar monochromatic wave region is 
unchanged -- this rule of vortex stabilization was already earlier stated in [4, 5]. In this 
case the wave number is proportional to the flow velocity, i.e., U~db/d~. From the coinci- 
dence condition of the wave number values at the junction of the two wave regions, the bound- 
ary layer and the central one, we obtain for ~ i  taking account of (6) 
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db c U 

dqD %a~ U1 ' 

where Uz is the flow velocity at the boundary layer of the wave ~=~. Consequently, 

(12) 

c.._~ il U (13) 
bl = cpla~ o ~ d %  

while for further analysis it is necessary to determine the regular motion. First one must 
explain the conditions of the conjugate inhomogeneous and monochromatic waves at the node 
q0=%, reaching it from the side ~<~i. In the region 0~cpl , where a = al = const, we 
obtain from Eq. (1) for the wave function ~ = ~0 exp (--i~t) (4o is a function of coordinates) 

U [ a2# , 1 a~b 
~ •  . + o~h, = O. ] 2p \ a y ~  g @ 

For  hm = ( I  + a2 )pU2 /2  and t a k i n g  a c c o u n t  o f  (12)  and the  r e l a t i o n  h = p U ( 3 b / 3 y )  - l  t h i s  
equation is written in the form 

dq~ c ~ F 2 
z ~ d ~  + z  + - - z - - ( l + a ~ ) - - ~ z ~ = O ,  ~ = ~ ( z ) , z =  qo (14) 

dz 2 dz al Pl  % ' 

where henceforth F = U/U+, with U+ being the velocity at the tube axis, and Fz = UI/U+. Since 
~I is a node of the monochromatic wave at which @ = 0 (an otherwise adjoining inhomogeneous 
and monochromatic wave cannot exist simultaneously), z = I corresponds to one of the roots of 

the function ~(z). The sharp increase in the velocity U near the wall, where it is maximum, 
makes it possible to put F ~ I in Eq. (14). In this case we have the condition 

The zeros of the Bessel function J0 are ~(n -- I/4), where n = I, 2, 3, .... Consequently, for 

z = I we obtain from (15) 

z~a~F1 ( 1 ) 
c - -  1 / 1 - l - a ]  n - - - - 4  ' n =  1, 2, 3 . . . .  (16) 

Vortex observations [6] justify the assumption that upon attachment to the wall a vortex 
is manifested in the form of a vortex tube which, expanding and narrowing, breaks from the 
well and tends to the central monochromatic flow region. The displacement of the vortex tube 
in the transverse flow direction after its break is accompanied by rotation of the vortex 
contour plane, so that, being removed from the wall, it expands along the flow. The portion 
of space in which the separating vortex tube is capable of turning in the flow direction is 
restricted by the large size of the vortex contour at the wall, so that along with them also 
exist uniform "associated" contours. The maximum achieved diameter of vortex contour, whose 
plane after separation is oriented normally to the wall, can encompass all distances from 
the breakup site of the associated vortex to the tube axis. Taking into account that the 
quantity h/p is a circulation, identical for all vortex contours, forming a vortex tube sepa- 
rating from the wall, we obtain its moment of rotation of the order of M ~ y2hL, where L is 
the large vortex size. 

During the break of a vortex tube some portion of its initial angular momentum is "left 
over" (lost). Since the separation effect is essentially a fluctuation, a statistical measure 
of the variation in rotation is determined by the fluctuation probability a 2 Therefore, the 
probable loss is the angular momentum fluctuation of the tube upon separation a2y2hL. To 
conserve the total angular momentum this fluctuation must coincide with the angular momentum 
of the remaining portion of the vortex tube. At the "root" of the tube, adjacent to the wall, 
the plane of the vortex contour is parallel to the wall. The angular momentum of this asso- 
ciated portion of the tube, having a height R -- y, is characterized by the quantity h(R -- y)L 2. 

Thus, we obtain h(R- y)L e = ha2yeL. Consequently, 

L --  a~Y2 a 2 ~  R.  ( 1 7) 
R--F 1 - - ~  

AlL vortices have this size as long as they are found in the zone of an inhomogeneous bound- 
ary-layer half-wavelenth. In the monochromatic wave region vortices occur with size L, 
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acquired by them at the boundary of the inhomogeneous region ~=~ . Starting from estimates 
of the variation of vortex circulation due to velocity fluctuations, the following relation 
was obtained [4] 

WL l /  ~/p ~j~aU/Oy, (18) 
in which the matching coefficient ~i is determined by one of the boundary conditions, and 7 
is the fluctuation scale: 

l __ --2---~Yl [ ab -~(1 +a2)-t (t9) 

For tube flow the nature of variation of shear stress is known: ~=%q0. Taking into 
account Eqs. (6), (17), we obtain from (18) an equation for F = U/U+: 

dF 
dq~ 1 -- 

while the coefficient ~=4~%/9 c~(lq-a~)~/~.~U+ can acquire for a 2 << I a constant value. 
eliminate it by taking into account that in a viscous sublayer ~3U/3y = --r0y/R, i.e., U = 
%R (I -- @~)/2~ . If q~= %, U- U 0 correspond to the sublayer boundary, then 

(20) 

We 

2p, Uo 
-17 0 - -  R(I-~g) " 

Consequently, for U0 = mU+ we obtain in the sublayer 

dF 2mq~ 

dq~ 1--(92o ' F = m - - -  

1 _ _ q ) 2  
2 " 

1 - -  rpo 

(21) 

(22) 

For a continuous associated velocity profile at the sublayer boundary, according to Eq. 
(22), it is necessary to take in (fU) ~=fm~q% (lq-q%)-, . For a quite small sublayer thick- 

ness when ~9-+I, one can practically put 2]/ ~ . , , % (I-~%) -~ l Then ~ = m and, according to 
(20), under the conditions q0= % , F = m we obtain 

F = m  1 q- 2 ( } / - ~ - - - 1 / % ) q - l n  ( l q -  q) ) ( 1 - -  }/--%-o ) ' (23)  

This solution exists in the boundary-layer region, 
an expansion at I -- ~-~0, including the main terms: 

in which W + I .  Therefore we write it as 

F = m  l +  -~ - (~ - -%)+ ln  , ~ < ~ < q % .  (24) 
1 - -  % 

We further establish the variation in velocity in a monochromatic flow zone, in which 
the variation in phase is determined by relationship (12), while the vortices have size L = 

a~(l--~1)-~R. Taking into account (18), (19), we obtain the equation dF/d~=--~2~/-~Ff/F~ , 
where the coefficient ~2 is found from the continuity condition of the associated velocity 
profile at the point ~= ~i. Taking Eq. (20) into consideration, we find that ~2= m(i--%) -~. 
Under the conditions ~ = 0, F = I the velocity profile is obtained in this zone in the form 

L ] F ,  \ ~, J ' ~ -  3 (1 - -~1 )  
(25) 

The F1 value is determined for ~=~i from (25): FI -- F~ = B; consequently, 

F1 ---- - ~ -  Jr 4 

The c h o i c e  o f  t h e  s i g n  i n  f r o n t  o f  t h e  r a d i c a l  i n  (26) i s  d e t e r m i n e d  so t h a t  t h e  v e l o c i t y  
p r o f i l e  m u s t  become  more  f i l l e d  upon r e f i n e m e n t  o f  t h e  s u b l a y e r ,  i . e . ,  a t  m + 0 .  We n o t e  t h a t  
(25)  mus t  be  r e p r e s e n t e d  a s  F = [ lq-(F71--1)(~/q~l)a /2]  -1 o r ,  q u i t e  a c c u r a t e l y ,  in  t h e  f o r m  o f  t h e  
series 

3 
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Now, according to (13), (27) we determine the change in phase in the region 0 ~ i :  

( o,9 o,~5 ] (28) 
b~-- a~Fa 1,65 F~ + F~ J"" 

Including relations (11), (16), (28) in Eq. (I0), we obtain an equation for rl: 

[ ][ 2 1 D ( r l )  qS(ra) 1 + a 2 2 .HD~ (rx) exp (--2r~) = 1 - -  if---- ~ 
1/2 

In this equation 

(29) 

4 - -  F--~ - - q -  F] )" (30) 

The calculations show that in the practically interesting region 6 ~< H ~< 35 Eq. (29) is well 
approximated by the expression 

2.56 
q -  VH- (31) 

We determine the relative sublayer thickness I --~0. For the F~ value known from (26) 
the latter is directly found from (24) for ~=~I. It can be seen that 

l _ % = ( l _ % ) e x p (  1 t F _[ - 3 ) [ @  ] 4 m - ~ P l  exp ( I - - % )  . (32) 

Since 3/4 ( 1 - - % ) < < 1  , then exp [3/4 (1 - -  %)] = 1 + 3 / 4  ( 1 - - % ) ,  in which case we obtain from (32) 

1__~o__(1__~1) [1  3 j--l ( 1 -- qh) exp s 

1 1 3 
s -- -- -- F1 + ~1. 

4 m -7- 

exp s, 
(33) 

To describe the flow structure for a given n we now know all the required characteristics: 
varying the quantity B in the region u ~< ~ ~< I/4, we find FI from (26). Further, calculating 
the sequence H, rl by (30), (31), we determine g0 by (11) and al = a0 exp (--r2), which makes 
it possible to find c and then calculate q0, from (7) for r = rl. Following that we find the 
relative velocity at the sublayer boundary m=3/2~(l--~l)r , as well as the sublayer thick- 
ness (33). 

It is still necessary to establish the connection of the results obtained with the flow 
Reynolds number Re = 2pRUo/~, where Uo is the mean flow velocity over the cross section. Com- 
paring the usual definition TO = %pU2/8 with (21), one immediately obtains the dependence 

Re = 32m (34) 
q(1 -- qo~) )~ 

w i t h  t h e  r a t i o  q = Uo/U+. Tak ing  i n t o  a c c o u n t  ( 22 ) ,  ( 24 ) ,  ( 27 ) ,  we f i n d  

q = 2 J" q~Fdco = (1 - -  ~ )  F 1 @ m (qol - -  (Po) - -  (1 - -  q)21) 
o 

1 3 ]  ( 1,37 0.4 F I  +-7-( r  -i- 1,97 - -  -6 - - 7 7 /  ~ '  (35) 
F1 

In the final result (35) the value of In[(I--~i)/(I--~0)] is expressed in terms of Fl by means 
of (24). To complete the flow calculation it is now necessary to determine the hydraulic 
resistance coefficient % in terms of the remaining parameters of the problem. This brings 
one to turn attention to the analysis of the nonstationary structure of a thin viscous sub- 
layer at the tube wall. This sublayer grows periodically and is destroyed as a result of 
fluctuations of the boundary-layer vortex, whose center is found at some distance y = Yc from 
the tube axis. The vortex oscillation frequency is (see [4]) 

- -  2 U~ , 
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where U c is the velocity at the center of the oscillating vortex. Since Yc § R, one can put 

in (36) a = a0, but the wave number ISb/3yl, varying more strongly, must be chosen at y = Yc" 

The vortex oscillation period T = 2x/m is found, according to (36), taking account of (6): 

T = 4r~a2~ (37 ) 
cU~ (1 + a~) " 

The region in which vortex fluctuations are realized at the wall is determined by its 

small scale I (see above), i.e., ; = R-- yc. This implies R(1--~c)=~ca2oR/2c]/l+a~ o , where 

q~e ---- YeIR �9 Hence 

[/ + a~ ,-l .  (38) 
\1 2 c V  1 -t- a% 

q~ l 

The value of U c is calculated from Eq. (24) ; more precisely, F = mmc with (p= ~c , 

Uc 3 -- 
me-- = I+ (~c-- %)+ In 1 ~-___! 

Uo ~ 1 -- % 
(39) 

For a nonstationary sublayer the simplest model is that of sudden flow near the wall with 

velocity Uc [4]. For this flow 

u__ =~(0, ~= R--y / 0 (4O) 
U~ 2 ~t 

Each time at the moment of time t = T there is a sublayer destruction, when its thickness 

has achieved the value R(1--~0). In this case we have at the sublayer boundary U = U0, and, 
according to (40): 

1- - -% 1 /  cmmo (1-i- a2o) 
80 - -  F Re 

4 2~q~gca~ 

1 
- q~ (to). 

I n  c 

(41) 

(42) 

Taking account of (34) we obtain from (41) 

cm2mc (1 + ao2 ) (1 - -  %) ~, _= (43) 
aq% (1 -~ %) (%qao) ~ 

The implicit dependence of Go on mc of the form (42) can be approximated by an explicit ex- 
pression. For example, accurately up to the second sign, the probability integral can be 
represented in the form 

Th en 

~-~- 12 % - - 2  ~ - - l n  ( 1 - - - - - )  (44) 
, m c  

The dependences  (34 ) ,  ( 4 3 ) ,  t o g e t h e r  w i th  ( 3 8 ) ,  ( 3 9 ) ,  ( 4 4 ) ,  d e t e r m i n e  the  r e s i s t a n c e  
law f o r  f l o w  in a t u b e .  Thus,  t he  s o l u t i o n  of  the  p rob lem has  been  c o m p l e t e d .  

C a l c u l a t i o n s  were  p e r f o r m e d  f o r  t he  wave r e g i o n s  c o r r e s p o n d i n g  to  the  modes n = 2 -9 .  
It was discovered that the wave structure and the intensity fluctuations vary little with 
increasing Re. A substantial modification in flow structure occurs with transition to a new 
n. In this case each new wave is generated, totally determined by the Re value, while ap- 
proximately at m = 1.5, the laminar-turbulent transition takes place. Table I shows the cal- 
culated wave parameters: the upper and lower parameter values correspond to a state at the 
initial stage of the turbulent regime, when k starts increasing sharply (Re = Re0), and the 
state with Re -~ 1.8" 104 . 

Vortices from a monochromatic wave, unlike vortices of an inhomogeneous boundary-layer 
wave, cannot, flowing in the boundary-layer wave region, remain there. This implies that the 
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TABLE I. Parameters of the Wave Structure 

n qo a a o a l  c ] O - s R e  

3 

4 

5 

6 

7 

8 

9 

q2, 

o~zo 

0,319 
O, 335 
0,484 
0,511 
0,576 
O, 608 
0,632 
0,664 
0,671 
0,701 
0,699 
O, 726 
O, 732 
0,745 

0,531 
0,526 
0,431 
O, 424 
0,375 
0,367 
0,337 
0,331 
0,309 
O, 304 
0,285 
0,283 
0,264 
0,264 

0,243 
0,243 
0,237 
0,237 
0,230 
0,228 
O, 222 
0,220 
0,214 
0,213 
0,207 
O, 206 
O, 199 
O, 199 

O, 46 
0,475 
0,541 
0,571 
O, 578 
0,621 
0,59 
0,642 
0,589 
0,644 
O, 574 
0,634 
9,582 
0,617 

1,43 
18 
2,58 

17,7 
3,85 

19,6 
5,18 

18,3 
6,59 

17,7 
8,19 

17,8 
11,8 
19,4 

a 

g 

~,6 qs ~,o ~gRe 

.,s " 

c : 7 8 
O# I z'e 
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b 
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Fig. I. Variations of relative velocities (a), 
sublayer thickness (b), mean velocity (c), and 
hydraulic resistance coefficient (d). 

length of the boundary-layer transverse wave cannot be larger than the transverse size of the 
monochromatic zone, i.e., 1--~i~i. Therefore, the existence of equilibrium turbulence re- 
gimes is possible for ~l @ 0.5. According to Table I, the first such regime is realized for 
n = 4, when ~I = 0.48-0.51. The corresponding Reynolds number is Re0 = 2580, in agreement 
with the well-known experimental data on the least possible Re values for a developed tur- 
bulent flow in a tube. The calculated values of the Re0 numbers for a sequence of generated 
transitions, starting with n = 4, are near those for which were noticed experimentally [7] 
an enhancement of the original random fluctuations, a strong instability, or generation of a 
transition. One can also recall primary facts of this nature, established by Shiller [8], 
who observed transitions in all cases predicted by Table I for n ~ 4 (the spreads in the cal- 
culated Re 0 are insignificant). Which of the transitions is realized in a specific situation 
depends on the level of the original perturbations. 

From the data of Table I one can draw conclusions on the turbulence intensity in changing 
the wave regimes. The calculated value n0 ~ 0.42 of the fluctuation intensity directly near 
the wall, as well as the fluctuation value al ~ 0.24 at the flow center are well verified ex- 
perimentally. Information on the variation of separate flow parameters in the Re dependences 
is illustrated in Fig. I. In particular, in Fig. Id we show the nature of establishment of 
the friction law during generation of the various wave regimes, compared with experimental 
data. In the region Re > 10 ~ the calculated k value is lower. The reason, obviously, is the 
fact that the model of the sudden formulation of a nonstationary sublayer of the form (40) be- 
comes less accurate in decreasing the fluctuation period T, when initial conditions of non- 
stationary viscous flow, not included in (40), begin to be important. Under these circumstances 
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it is necessary to perform in the future further analysis of nonstationary conditions at the 

wall. 

NOTATION 

~, the wave function; y, radial distance from the tube axis; t, time; U, absolute value 
of the translational velocity; p, density (incompressible flow); c and b, wave amplitude and 
phase; ~, fluctuation frequency; R, tube radius; ~, shear stress; t0, shear stress at the 
wall; M, viscosity coefficient; h, a "quantum" parameter, related to the circulation of large 
vortices; I, hydraulic resistance coefficient; Re, Reynolds number. 
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MATHEMATICAL BOUNDARY-LAYER MODEL FOR A WIDE RANGE OF TURBULENT 

REYNOLDS NUMBERS 

V. G. Zubkov UDC 532.517.4 

Based on the e--s turbulence model, a boundary-layer system of equations is proposed, 
describing the laminar, transition, and turbulent flow regimes. 

Analysis of contemporary turbulence models [I] shows that the most promising models for 
describing turbulent transfer processes in boundary layers are those in which the fluctuating 
flow characteristics are determined as a result of simultaneous solution of the equations of 
turbulence intensity e and dissipation s. For the development of turbulent flows with rela- 
tively large turbulent Reynolds numbers (RT = e2/(~s) > IdS) models of thls" type have been 
developed in detail [2] having many practical applications. In describing flows with small 
R T e--s models were first used in [3]. In this case additional corrective terms and closure 
functions were introduced in the equations of turbulence intensity and dissipation, but justi- 
fying several of their assumptions seemed to raise doubts [I]. Thus, for example, introduc- 
tion of the additional term --2~(8~y) 2 in the right-hand side of the e equation, due to 
nonvanishing of dissipation at the wall, destroys the total balance and leads to lowering of 
the solution stability for increasing step sizes in the longitudinal direction. There is no 
physical justification for the further term in the dissipation equation 2MT~(82U/Sy2) 2, which 
seems to affect substantially the solution results in the direct neighborhood of the stream- 
line surface, where the gradients of the flow parameters are particularly significant. 

Despite the fact that by means of the Jones--Launder model [3] it seems possible to cal- 
culate several important special cases of boundary-layer flow, such as flow with acceleration, 
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